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Abstract

Compositional data, such as soil texture, are hard to deal with in the geosciences
as standard statistical methods are often inappropriate to analyse this type of data.
Especially in sensitivity analysis, the closed character of the data is often ignored. To
that end, we developed a method to assess the local sensitivity of a model output w.r.t.5

a compositional model input. We adapted the finite difference technique such that the
different parts of the input are perturbed simultaneously while the closed character of
the data is preserved. We applied this method to a hydrologic model and assessed the
sensitivity of the simulated soil moisture content to local changes in soil texture. Based
on a high number of model runs, in which the soil texture was varied across the entire10

texture triangle, we identified zones of high sensitivity in the texture triangle. In such
zones, the model output uncertainty induced by the discrepancy between the scale of
measurement and the scale of model application, is advised to be reduced through
additional data collection. Furthermore, the sensitivity analysis provided more insight
into the hydrologic model behaviour as it revealed how the model sensitivity is related15

to the shape of the soil moisture retention curve.

1 Introduction

In environmental studies, modellers are sometimes confronted with multivariate data
that carry only relative information of which the components represent parts of a whole.
Such type of data is called compositional or closed data as the components always20

sum to a constant, e.g. 1 or 100 %. A typical example is the sedimentary particle size
distribution of which the closed character implies that the components are not free to
vary independently such that if one of its components (e.g. clay) decreases (increases),
at least one of the others (e.g. silt or sand) must increase (decrease). Because of this
particular property, the application of standard statistical methods to compositional data25

is hampered and many of the results are invalid because the methods are inappropriate
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to analyse this type of data. Problems in the analysis of compositional data have been
discussed since the end of the twentieth century by a number of authors (e.g. Aitchison,
1986; Aitchison and Egozcue, 2005).

A frequently performed statistical exercise involves the evaluation of how changes
in the model input or parameters affect the model output. This is widely known as5

sensitivity analysis (SA) and allows (i) to allocate the uncertainty in the model output to
different sources of uncertainty in the model input (Saltelli et al., 2000), (ii) to prioritize
additional data collection or research concerning the uncertainties identified as most
important (Frey and Patil, 2002) and (iii) to verify or validate a model (Fraedrich and
Goldberg, 2000).10

According to the objective of the analysis, the techniques for sensitivity analysis are
usually classified into screening, global and local methods. Screening methods aim at
identifying the model inputs to which the model output is most sensitive. Global meth-
ods calculate the total effect of a model input on the model output across the entire
input space, whereas local methods investigate the sensitivity of the model output for15

a specific input scenario, i.e. at a fixed set of points from the model input domain.
The local methods are especially important for complex, nonlinear models as the ef-
fect of a model input on the model output may be highly localized, which makes the
assessment of a global effect inappropriate in this case. Screening methods are of-
ten relatively simple and are a particular instance of sampling-based methods. One of20

the most commonly used screening methods is the elementary effect method (Campo-
longo et al., 2007). Commonly used global methods are the Sobol method (e.g. Sobol,
1993; Saltelli et al., 2008a), the Fourier amplitude sensitivity test (FAST) (e.g. Saltelli
et al., 1999; McRae et al., 1982), the response surface method (RSM) (e.g. Cryer and
Havens, 1999; Kleijnen et al., 1992) and Monte-Carlo-based methods (Hofer, 1999;25

Gwo et al., 1996). Most of them are variance based, which means that the resulting
sensitivity reflects the contribution of the model input to the total variance in the model
output. In contrast, local methods are based on first-order second-moment approxi-
mations (FOSM) in which it is assumed that the first two moments are sufficient to
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characterize a variable (Dettinger and Wilson, 1981). Examples of local methods are
the Morris method (e.g. Morris, 1991; Francos et al., 2003) and the finite difference
method (e.g. Lenhart et al., 2002; Foglia et al., 2009). Depending on the specific SA
problem, a screening, global or local method needs to be selected such that the method
fits the objective(s) of the analysis. For a review on methods for sensitivity analysis, the5

reader is referred to Saltelli et al. (2006), Frey and Patil (2002) and Helton and Davis
(2003).

In case a SA on multiple model inputs is intended, the inputs can be varied simul-
taneously based on their underlying probability distribution (e.g. Gwo et al., 1996), or
they can be varied individually around a base value while keeping the value of the other10

model inputs constant (e.g. Ferreira et al., 1995). The latter strategy is known as one-at-
a-time sensitivity analysis (OAT-SA) and has been the subject of discussion because it
is built on assumptions of model linearity and cannot detect interactions between model
inputs (Saltelli and Annoni, 2010). Furthermore, OAT-SA is by definition nonexplorative
as only a fraction of the total hyperspace is explored, and is therefore attributed “the15

curse of dimensionality” (Saltelli and Annoni, 2010). Despite the shortcomings of OAT-
SA, a literature review by Saltelli et al. (2006) revealed that most published sensitivity
analyses use OAT. In some cases (strong) input correlations were observed (Boateng
and Cawlfield, 1999; Zhu et al., 2010) and the assumption of independent inputs was
therefore incorrectly adopted. Only in a limited number of SA studies, correlation struc-20

tures have been incorporated (Pan et al., 2011; Jacques et al., 2006; Gevrey et al.,
2006). The reason why OAT is so popular is that the observed effect on the model
output is solely due to the fact that one input has been changed, which is consistent
with the modeller’s way of thinking to systematically evaluate the effect of input varia-
tion. In case the model input consists of compositional data, the different components25

of the input are related through the closure balance, and consequently an OAT-SA on
its individual components is not justified, but instead all components should be varied
simultaneously in order to preserve the closed character of the data. Despite the need
to deal with this type of data in environmental models, limited research on sensitivity
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analysis involving compositional model inputs has been reported to date. Often, the
methods applied do not or only partly respect the characteristic properties of composi-
tional data. For example, Bormann (2007) defined a neighbourhood sensitivity for soil
texture by applying a fixed change of 1 % in the portion of clay or silt while keeping
the portion of silt, respectively sand fixed, although a simultaneous change in all of its5

portions would have been expected.
In this study, the main objective is to develop a sensitivity analysis method that

allows to quantify the sensitivity of a model output w.r.t. a specific input scenario in
case the model input consists of compositional data. To that end, the finite difference
technique has been adopted and modified to deal with the closed character of the in-10

puts. The method comprises the calculation of an omnidirectional local sensitivity index
that indicates the average impact on the model output when perturbing the composi-
tional model input in different directions around a given point. Since the results of the
derivative-based method depend on the magnitude of perturbation (Breshears et al.,
1992), especially in case the model shows strong nonlinear relationships and corre-15

lations (Saltelli et al., 2000), the method also includes a procedure to optimize the
perturbation factor. Subsequently, the SA method is applied to the hydrologic model
TOPLATS and is used to evaluate changes in the simulated soil moisture content w.r.t.
small local changes in soil texture, of which the composition was varied across the
entire input domain, defined by the soil texture triangle. On the basis of this generated20

local sensitivity index, we aim at locating regions in the texture triangle to which the
modelled soil moisture is most sensitive.

In addition to constructing and applying the SA method, another objective of this
study is to gain more insight into the behaviour of the hydrologic model, and more
specifically with regard to the role of soil texture therein. Information on soil texture is25

essential for the operation of a hydrologic model since it is used to estimate the soil
hydraulic parameters from the hydraulic model. Because soil texture is often measured
at a number of sparsely distributed locations within the study area, all locations falling
into the same soil type as the one of the sampled location (cfr. information on the soil
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map) are attributed the same hydraulic properties within the hydrologic model. This
discrepancy between the scale of measurement (spacing, cfr. scale triplet, Blöschl and
Sivapalan, 1995) and the scale of model application (grid resolution) raises doubts
about the suitability of the measured input value as the most probable (Barth et al.,
2001) since it may give rise to large uncertainties in the model output. In this perspec-5

tive, the presented sensitivity analysis offers the possibility to reduce this type of model
output uncertainty by formulating guidelines for additional data collection as a function
of the measured soil texture.

2 Materials and methods

2.1 The hydrologic model10

The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) is a spatially
distributed water and energy balance model that is based on a lateral redistribution
of water (Famiglietti and Wood, 1994; Peters-Lidard et al., 1997; Pauwels and Wood,
1999), i.e. groundwater gradients induce spatial patterns of soil moisture and are es-
timated from the local topography and the soil transmissivity (Sivapalan et al., 1987).15

The original model (Famiglietti and Wood, 1994) was modified in 1997 to correct for de-
ficiencies in the representation of the heat fluxes (e.g. ground heat flux) (Peters-Lidard
et al., 1997), and in 1999 to expand the representation of the hydrological processes
towards conditions in high latitudes (e.g. frozen ground and snow) (Pauwels and Wood,
1999).20

2.1.1 Model parametrization

In TOPLATS, the soil moisture profile is simulated through the closed-form analytical
equations of Brooks and Corey (1964), which express the relationship between the soil
moisture content θ (m3 m−3), the hydraulic head ψ (m) and the hydraulic conductivity
K (ms−1). The soil moisture retention curve (SMRC) and the hydraulic conductivity25

8846

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/8841/2012/hessd-9-8841-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/8841/2012/hessd-9-8841-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 8841–8883, 2012

Sensitivity analysis
for compositional

data

L. Loosvelt et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

curve describe how ψ is related to θ and K , respectively. The shape of both curves is
determined by the soil hydraulic parameters (SHPs): the residual soil moisture content
θr (m3 m−3), the saturated soil moisture content θs (m3 m−3), the bubbling pressure ψc
(m), the pore size distribution index λ (–) and the saturated hydraulic conductivity Ks

(ms−1). When field measurements of the SHPs are not available, they are estimated5

based on soil textural information (soil type or particle size distribution) through applica-
tion of either class or continuous pedotransfer functions (PTFs). Numerous PTFs have
been proposed, reviewed and evaluated over the last decade (e.g. Tietje and Tap-
kenhinrichs, 1993; Wagner et al., 2001; Nemes et al., 2009), but the “accuracy” and
“reliability” of the PTFs are highly variable (Loosvelt et al., 2011) and mainly depend on10

the similarity of the soil and climatic features between the region of PTF development
and the region of PTF application.

In this study, the continuous PTFs of Rawls and Brakensiek (1985, 1989) are ap-
plied to estimate the SHPs for the Brooks and Corey (1964) model based on the sand
content Sa (%), the clay content Cl (%), and the soil porosity P (–). The latter is cal-15

culated from the bulk density ρb (gcm−3) and the particle density ρs (gcm−3) following
the relationship P = 1−ρb/ρs. The particle density is set at 1.4 gcm−3 (Kaiser and
Guggenberger, 2003; Mayer et al., 2004) and is corrected for the organic carbon con-
tent, for which a value of 1.5 % (Sleutel et al., 2006) is assumed. The bulk density, ρb,
is calculated following the procedure as described by Saxton and Rawls (2006). When20

applying the PTFs of Rawls and Brakensiek (1985, 1989), one should bare in mind that
these PTFs were actually developed for textures with a clay content between 5 % and
60 % and a sand content between 5 % and 70 %.

In addition to the soil parameters (e.g. SHPs, soil resistance, heat capacity),
TOPLATS has a large number of other model parameters among which the vegeta-25

tion parameters (e.g. albedo, leaf area index, stomatal resistance) and the topmodel
parameters (e.g. saturated subsurface flow, initial water table depth) are the most im-
portant ones (see Sect. 2.1.2).
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2.1.2 Data set

The hydrologic model is applied at a point location (with coordinates 50.89◦ N and
4.09◦ E) in the catchment of the Bellebeek (Belgium) in order to simulate the soil mois-
ture content of the upper soil layer (5 cm) during the period 1 January 2006 to 31 De-
cember 2006, using an hourly time step. For the catchment, appropriate values for the5

topmodel parameters are taken from literature (Samain et al., 2011). The soil and land
cover type registered at the simulation point are loam and bare soil, respectively. The
meteorological variables wind speed, relative humidity, net radiation, atmospheric pres-
sure and temperature (dry bulb, wet bulb, dew point) were registered with a temporal
resolution of 10 to 60 min at the meteorological station of Liedekerke, which is situated10

near the outlet of the catchment. Missing data were complemented by measurements
from nearby meteorological stations (at Gooik and Denderbelle). Measurements of in-
coming shortwave radiation were not available at the station of Liedekerke, but were
calculated from the net radiation based on a regression (with a correlation of 0.96)
between the shortwave and net radiation measured at a nearby meteorological sta-15

tion in Gooik (approximately 2 km south of the catchment). The meteorological records
point out that the weather conditions in the catchment of the Bellebeek apply to a tem-
perate climate with an annual mean temperature of 11.5 ◦C and a total annual rainfall
of 750 mm. Furthermore, in situ soil moisture measurements (at 2.5 cm depth) taken
between 13 May and 30 May 2007 are used to validate the model.20

2.2 Compositional data

2.2.1 Basic concept and operations

Compositional or closed data are multivariate data, represented by positive real vec-
tors of which the components sum up to a constant κ. The components of the vector
show the relative weight or importance of the parts in a total, which means that com-25

positional data carry only relative information. A typical example of compositional data
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is soil texture, which provides information on the relative portion of sand, clay and silt
in a given soil sample, and of which the closed character implies that changing one
portion causes the other portions to change as well, such that the sum of the portions
remains equal to 100 %. The set of all possible compositions x with D components
forms a simplex sample space, denoted as SD, and is defined as:5

SD = {x = (x1,x2, . . . ,xD) |xi ≥ 0, j = 1,2, . . . ,D;
D∑
i=1

xj = κ > 0} (1)

where xi is the i th part of composition x, and κ is the closure constant of which the
value is generally 1 (proportions) or 100 (percentage). For the specific problem setting
in this study, the sample space is a simplex with κ = 100 and D = 3, as the soil texture
encloses three different parts that sum up to 100 %. In the simplex, the composition p010

with coordinates
(100

3 , 100
3 , 100

3

)
is called the baricenter can be conceived as the origin

of the sample space.
Specific operations and statistical properties (e.g. distributions) for compositional

data were introduced by Aitchison (1986) and further developed by Egozcue and
Pawlowsky-Glahn (2006). The basic operations on the simplex that are relevant for the15

sensitivity analysis are summarized below. For a comprehensive description of these
and other properties, the reader is referred to Aitchison (1982).

– Vector addition of composition x ∈ SD and composition y ∈ SD (also called per-
turbation) (Aitchison, 1986):

x⊕y =

(
x1 ·y1∑D
i=1xi ·yi

,
x2 ·y2∑D
i=1xi ·yi

, . . . ,
xD ·yD∑D
i=1xi ·yi

)
(2)20

For a detailed discussion on the visualization, the role and the interpretation of
addition in the simplex, we refer to Aitchison and Ng (2005) and von Eynatten
et al. (2002).
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– Scalar multiplication of a composition x ∈ SD by a scalar λ ∈R (also called power
transformation) (Aitchison, 1986):

x� λ =
(

xλ1∑D
i=1x

λ
i

,
xλ2∑D
i=1x

λ
i

, . . . ,
xλD∑D
i=1x

λ
i

)
(3)

– Aitchison distance between composition x ∈ SD and composition y ∈ SD (Aitchi-
son, 1983):5

dA(x,y) =

√√√√ 1
2D

D∑
i=1

D∑
j=1

(
ln
(
xi
xj

)
− ln
(
yi
yj

))2

(4)

The Aitchison distance is a measure for the difference between two compositions
x and y (Aitchison, 1992). If one of the compositions corresponds to the baricenter
(e.g. y = p0 =

( κ
D , κD , . . . , κD

)
), then dA(x,p0) is equal to the norm of x, denoted as

‖x‖A.10

Furthermore, it is worth mentioning that coordinates in the vector space can be trans-
formed into a Cartesian coordinate system. A frequently used transformation is the
isometric logratio (ILR) transformation, which preserves all metric properties (Egozcue
et al., 2003). Although a coordinate transformation is not required within the presented
SA method, it will be used for a better understanding of the operations in the simplex.15

2.2.2 Soil texture in the simplex

The texture of a soil sample x = (Cl,Sa,Si) is defined by the distribution of the soil
particle sizes Cl (clay, diameter <2 µm), Sa (sand, diameter >2 mm) and Si (silt,
2 µm<diameter<2 mm). Because the parts cannot vary independently (there are only
two degrees of freedom), it is possible to visualize the soil texture, a 3-D composi-20

tion, in two dimensions by means of an equivalent representation in the texture triangle
8850
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(Fig. 1). This is an equilateral triangle with vertices at p1 = (100,0,0), p2 = (0,100,0)
and p3 = (0,0,100). The three vertices are defined counter-clockwise and are con-
nected through the segments p1p3, p3p2 and p2p1, scaled from 0 to 100.

In the texture triangle, three bisectors are defined as the straight lines through one
of the vertices and the baricenter p0 =

(100
3 , 100

3 , 100
3

)
(see Fig. 1). The bisector through5

vertex p1, p2 and p3 is referred to as B1, B2, and B3, respectively, and has the property
that the values of two parts of the composition are always equal on this line.

2.3 Local sensitivity analysis on compositional data

The aim of a local sensitivity analysis is to measure the effect of perturbing a specific
composition x, i.e. inducing small relative changes to the composition, on the model10

output y . The sensitivity of y with respect to x is expressed as a sensitivity function
that is defined as the derivative of y with respect to x and is evaluated at one particular
value of x by using the finite difference approximation. Therefore, small changes in x

need to be imposed that, considering the closed character of x, imply a change in each
of its parts xi (i = 1,2, . . . ,D) while maintaining

∑D
i=1xi = κ. The model output y is said15

to be sensitive to model input x if small changes in x produce large changes in y . On
the contrary, y is called insensitive to x if small changes in x have almost no effect
on y .

2.3.1 Perturbing in the 2-D Euclidean space

The methodology presented in this paper for perturbing compositional data is built by20

analogy with a perturbation in a two-dimensional Euclidean space. Suppose we want
to simultaneously perturb two inputs x∗1 and x∗2 with a factor ξ, four possible outcomes
are evident and are given by the Cartesian coordinates (x∗1 · (1+ξ),x∗2 · (1+ξ)), (x∗1 · (1−
ξ),x∗2 · (1−ξ)), (x∗1 · (1+ξ),x

∗
2 · (1−ξ)), (x∗1 · (1−ξ),x

∗
2 · (1+ξ)). These are the intersections

of the bisectors of the Cartesian coordinate system and the circle with centre (x∗1,x∗2)25

and radius d =
√

(ξx∗1)2 + (ξx∗2)2. The circle defines all possible perturbations and is
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therefore further referred to as the perturbation circle. Since it is impossible to evaluate
an infinite number of perturbations, only a limited set of perturbed points, e.g. the four
points on the bisectors, can be considered.

This idea is adopted for the perturbation of a 3-D composition x = (x1,x2,x3). Con-
sider a random sample x from S3 which is defined by its triangular coordinates in5

a ternary diagram (see Fig. 1). Through ILR-transformation, the composition can be
represented in the 2-D Euclidean space by means of the Cartesian coordinates (x∗1,x∗2)
(Fig. 2a). Likewise, any geometric shape on the ternary diagram can be transformed.
Figure 2a shows that after ILR-transformation, the bisectors B1, B2, and B3 preserve
their angles of 60◦ (see Sect. 2.2.2) and the baricenter p0 forms the origin of the Carte-10

sian system in which the bisectors intersect. The perturbation of sample x with fac-
tor ξ can now be performed in the Euclidean space, following the methodology de-
scribed above. First of all, the perturbation circle with centre x = (x∗1,x∗2) and radius

d =
√

(ξx∗1)2 + (ξx∗2)2 is constructed around x (Fig. 2b). As only perturbation in the di-

rections given by the bisectors (further called perturbation axes) is considered, the15

directions of the bisectors are transferred to composition x by means of a translation.
The perturbed points are then defined by the intersections xi+ and xi− between the
translated bisectors B′

i (i ∈ {1,2, . . . ,D}) and the perturbation circle (Fig. 2b). Finally,
the Cartesian coordinates of the perturbed compositions xi+ and xi− are backtrans-
formed to the simplex through an inverse ILR-transformation (Fig. 3, see further).20

2.3.2 Perturbing in the simplex

Yet, in order to avoid the roundabout method of coordinate transformations, the opera-
tions in the Euclidean space are mimicked by operations in the simplex. This results in
following procedure to perturb a composition x with a constant factor ξ:

1. Perform one of the scalar multiplications x± = x�(1±ξ) (Eq. 3) in order to rescale25

the composition x with a factor ξ. The scaling factor ξ determines the magnitude of
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the perturbation, i.e. the higher the value of ξ, the more the perturbed composition
will deviate from the sampled composition x.

2. Calculate the Aitchison distance dA(x,x±) = d (Eq. 4) in order to quantify the dif-
ference between the sampled composition x and the rescaled compositions x+
and x−. Note that for the same value of ξ, the value of d increases with increasing5

values of ‖ x ‖A.

3. Define a circle with centre p0 and radius d and determine the intersections be-
tween the circle and the perturbation axes, here the bisectors B1, B2, and B3
(Fig. 3). For each axis in direction i ∈ {1,2, . . . ,D}, this problem is solved by
searching for the compositions v i+ and v i− on the axis that satisfy the condition10

‖ v i ‖A= d (see Appendix). The resulting compositions are further called direc-
tional vectors.

4. Add the directional vectors v i+ and v i− (i ∈ {1,2, . . . ,D}) to the composition x

(Eq. 2). This results in three pairs of new compositions {xi+,xi−} that lie on the
perturbation circle (Fig. 3). Since the performed operation preserves the distance15

in the simplex, the perturbation circle around x has radius d . Although its circular
shape is distorted in the simplex (the further from the baricenter, the more dis-
tortion; examples of circles are shown in Fig. 3), the definition of a circle remains
valid.

In summary, when perturbing composition x in the simplex SD with a fixed factor ξ fol-20

lowing the methodology described above, we obtain three pairs of new compositions
{xi+,xi−} with i ∈ {1,2, . . . ,D} that are a subset of all possible perturbations, defined
by the circle with centre x and radius d = dA(x,xi±). Note that also M ∈N other per-
turbation axes could have been chosen by selecting M points on a circle around the
baricenter, either at random or such that they form angles of 360

2M degrees, and by con-25

necting each of the selected points with the baricenter. In case of M perturbation axes,
steps 4 and 5 from the methodology would respectively result in M pairs of directional
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vectors {v i+,v i−} and M pairs of perturbed compositions {xi+,xi−}. In this study, we
selected the bisectors as perturbation axes (hence, M = 3) as a result of which the
perturbed compositions (i) define angles of 60◦ degrees on the perturbation circle, and
(ii) lie on the translated bisectors B′

i , connecting x with vertex pi (see Fig. 3). The com-
positional lines B′

i also illustrate the effect of increasing (or decreasing) the magnitude5

of perturbation in direction i , as the perturbed compositions always lie on this line but
shift towards (or away from) vertex pi .

2.3.3 Calculating the sensitivity index

The methodology for perturbing a composition in the simplex allows to approximate the
sensitivity function by means of the finite difference technique. The sensitivity function10

can be further summarized into a sensitivity index in order to express the sensitivity of
y to small changes in x by means of a single value. In this section, it is described how
the sensitivity index is evaluated at one particular value of x.

In the simplex, a composition x is sampled uniformly at random from the sample
space. Therefore, a Dirichlet distribution is defined, which is the multivariate general-15

ization of the beta distribution and is parametrized by a vector α . The density function
of the Dirichlet distribution is given by:

fD(x;α ) =
Γ
(∑D

i=1αi
)

ΠDi=1Γ(αi )
ΠDi=1x

αi−1
i (5)

with x = (x1, . . . ,xD) a sample from SD, α = (α1, . . . ,αD) the parameter vector and D the
dimension of the sample space. In order to guarantee that the composition is sampled20

uniformly at random, the condition α = 1 should be fulfilled. The sampled composition
x is thereupon perturbed in M different directions following the methodology described
in Sect. 2.3.2.

After sampling and perturbing x, the model output y is determined for both the sam-
pled composition x and the perturbed compositions xi+ and xi−. For each direction25
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i given by the perturbation axes, a forward and backward directional sensitivity func-
tion, respectively denoted as ∇v i+

yt(x) and ∇v i−
yt(x), are calculated using the finite

difference technique:∇v i+
yt(x) ≈ yt(x⊕v i+)−yt(x)

dA(x⊕v i+,x) = yt(xi+)−yt(x)
d

∇v i−
yt(x) ≈ yt(x)−yt(x⊕v i−)

dA(x⊕v i−,x) = yt(x)−yt(xi−)
d

(6)

with t the time step of model output y , v i± the directional vectors for perturbation in5

direction i and d the Aitchison distance (see Eq. 4). Averaging both functions leads to
a central, directional sensitivity function ∇iyt(x), which indicates the average change in
y caused by opposite changes in x in the direction of perturbation axis i :

∇iyt(x) ≈
yt(x⊕ v i+)− yt(x⊕ v i−)

dA(x⊕ v i+,x⊕ v i−)
=
yt(xi+)− yt(xi−)

2d
. (7)

As the sensitivity function itself is not useful for sensitivity analysis (Saltelli et al.,10

2008b), it is summarized into an omnidirectional local sensitivity index S (by analogy
with the sensitivity index proposed by Hill and Tiedeman, 2007):

S(x) =
1
M

M∑
i=1

√√√√ 1
N

N∑
t=1

(∇iyt(x))2 (8)

with N the number of time steps in the model output and M the number of perturbation
axes (hereM = 3). The sensitivity index is hence a single value that reflects the average15

response of y when x is perturbed with a fixed factor ξ in M different directions, each
covering two opposite changes in x. It is calculated as the root mean squared difference
in the model output resulting from two oppositely perturbed compositions, averaged
over the different perturbation directions. As such, the sensitivity index can be easily
updated when ∇iyt(x) is calculated for additional perturbation directions. In case the20
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model output y is time-independent, i.e. N = 1, then S reduces to the mean absolute
difference in the model output resulting from two oppositely perturbed compositions. An
overview of the methodology to calculate the sensitivity index is given in Algorithm 1.
Note that the presented methodology does not allow to calculate the sensitivity for the
baricenter as the scalar multiplication p0 � (1± ξ) has no effect on this composition.5

Algorithm 1: Calculate the local sensitivity index S for a sampled composition x

Data: - a composition x from the sample space SD (Sect. 2.3.2);
- a perturbation factor ξ (Sect. 2.3.4);
- a set of M perturbation directions;

Result: sensitivity index S for y at x

begin
apply the model to determine yt(x);
perform the scalar multiplication x� (1± ξ) = x± (Sect. 2.3.2, step 1);
calculate the Aitchison distance dA(x,x±) (Sect. 2.3.2, step 2);
for each perturbation direction i ∈ {1,2, . . . ,M} do

determine the directional vectors {v i+,v i−} (Sect. 2.3.2, step 3);
add the directional vectors to x to obtain {xi+,xi−} (Sect. 2.3.2, step 4);
apply the model to determine yt(xi+) and yt(xi−);
approximate the central, directional sensitivity function ∇iyt(x) (Eq. 7)

end
calculate the omnidirectional local sensitivity index S(x) (Eq. 8)

end

2.3.4 Optimizing the perturbation factor

The choice of the perturbation factor ξ determines the quality of the sensitivity function:
the smaller its value, the better the finite difference scheme approximates the deriva-
tive. However, if ξ is taken too small it might give rise to numerical errors. If ξ is taken too
large, errors due to model nonlinearities might be introduced in the analysis De Pauw10
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and Vanrolleghem (2006). Therefore, an optimization procedure is included in the pre-
sented SA framework. The basic idea is to make both types of error as small as pos-
sible by minimizing the difference in model sensitivity when inducing opposite changes
in the model input, i.e. the difference between the sensitivity functions ∇v i+

yt(x) and
∇v i−

yt(x) should be as small as possible when perturbing in direction i . Although sev-5

eral measures can be used to quantify this difference, the sum of squared difference
between their absolute values is selected in this study and is denoted as Ci (x):

Ci (x) =
1
N

N∑
t=1

(∣∣∇v i+
yt(x)

∣∣− ∣∣∣∇v i−
yt(x)

∣∣∣)2
. (9)

Since the sensitivity analysis explores M directions on the perturbation circle, M val-
ues of Ci (x) are obtained on which the minimization procedure needs to be carried10

out. In order to solve this optimization problem, the maximum value over all Ci (x)
(with i ∈ {1,2, . . . ,M}), further called Cmax(x), is used as objective function. For the
SA problem in this study, it is chosen to limit ξ to a set of fixed values, such that
ξ ∈ {10−5,10−4,10−3,10−2,10−1} although other intermediate values could have been
chosen as well. An overview of the methodology to optimize the perturbation factor for15

a sampled composition is given in Algorithm 2.
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Algorithm 2: Optimize the perturbation factor ξ for a sampled composition x

Data: - a composition x from the sample space SD (Sect. 2.3.2);
- a set of L perturbation factors ξ (Sect. 2.3.4);
- a set of M perturbation directions;

Result: optimal perturbation factor ξ at x

begin
apply the model to determine yt(x);
for each ξ ∈ {ξ1,ξ2, . . . ,ξL} do

perform the scalar multiplication x� (1± ξ) = x± (Sect. 2.3.2, step 1);
calculate the Aitchison distance dA(x,x±) (Sect. 2.3.2, step 2);
for each perturbation direction i ∈ {1,2, . . . ,M} do

determine the directional vectors {v i+,v i−} (Sect. 2.3.2, step 3);
add the directional vectors to x to obtain {xi+,xi−} (Sect. 2.3.2, step 4);
apply the model to determine yt(xi+) and yt(xi−);
approximate the sensitivity functions ∇v i+

yt(x) and ∇v i−
yt(x) (Eq. 6);

calculate Ci (x) (Eq. 9);
end
determine Cmax(x) as

M
max
i=1

Ci (x);

end
select the value of ξ for which Cmax(x) is minimal;

end

3 Results and discussion

The experimental set-up consists of two main steps: in the first step, 100 textures are
sampled from the texture triangle to determine the optimal factor ξ for perturbing soil
texture. In the second step, 5000 textures are sampled from the texture triangle and
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are used as input to the hydrologic model to evaluate the response of the simulated
soil moisture when texture is perturbed with the optimal perturbation factor.

3.1 Identification of the optimal perturbation factor

Hundred compositions are sampled from the texture triangle according to a Dirichlet
distribution (with α = 1). For each sampled texture, the perturbation factor ξ is eval-5

uated for the values in {10−5,10−4,10−3,10−2,10−1} by applying the methodology as
described in Algorithm 2. For each ξ, we obtain 100 values of Cmax of which the mean,
the minimum and the maximum are shown in Fig. 4a. The mean value of Cmax clearly
shows a minimum for ξ = 10−2, which suggests that this value is optimal for perturbing
a broad range of textures. Although the minimum value of Cmax is lowest for ξ = 10−4,10

this perturbation factor can be discarded as being optimal since the spread over the
different values of Cmax is very large for this value of ξ. Or stated differently: when
ξ = 10−4 would be selected as optimal, it would result in a very low vaue of Cmax for
only a limited number of textures whereas the majority of the samples would be char-
acterized by a larger value of Cmax. These findings are in correspondence with the15

frequency distribution of the optimal ξ-values (Fig. 4b), which shows that for the major
part (about 65 %) of the samples, Cmax is minimal when they are perturbed with 10−2.
For 25 % and 10 % of the samples, the optimal value of ξ is respectively smaller and
greater than 10−2. The samples from the group with an optimal ξ smaller than 10−2

show a relatively heterogeneous distribution in the texture triangle (see Fig. 5) with the20

highest concentration around textures with a clay content above 40 % or a sand content
between 20 % and 50 %. The samples from the group with an optimal ξ greater than
10−2 are mainly located around textures with a sand and clay content of 30 %.

For practical purposes, it is chosen to use a fixed value of 10−2 for the perturba-
tion factor, as it would unnecessarily increase the complexity of the sensitivity analysis25

when making ξ dependent of the sampled texture. Consequently, deviations from the
optimal value are mainly located within the texture classes clay loam and loam (Fig. 5).
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3.2 Identification of sensitive regions in the texture triangle

Identifying sensitive regions in the texture triangle with respect to the estimation of soil
parameters or with respect to the prediction of soil moisture is useful for the model
user as it allows to reduce the uncertainty in the predicted variable. Since standardly
available soil information is often limited to a soil map of the study area and a number5

of sparsely distributed soil texture measurements, the measurement is assumed to be
representative for the corresponding soil map unit. Consequently, the model user at-
tributes the same particle size distribution to all locations falling into that soil map unit,
whereas the soil texture at a location different from the measurement point, but within
the same soil map unit, may (largely) deviate from the sampled texture. Although it is10

assumed that the spatial variability within a homogeneous soil map unit covers only
a minor part of the total variability in texture that is enclosed within the definition of the
corresponding soil type, the discrepancy between the scale of measurement and the
scale of model application might introduce large uncertainties in the model output. If
large uncertainties in either the estimated SHPs or the simulated soil moisture are not15

acceptable (depending on the objective of the study), the uncertainty about the poten-
tial bias in the measured soil texture due to spatial variability should be further reduced
through additional data collection. If the pattern in sensitivity is identified, the following
rule of thumb to prioritize additional data collection can be applied: “if the sampled tex-
ture, which is assumed to be representative for a certain soil map unit, is located within20

a region of high sensitivity in the texture triangle, then additional texture samples within
the area corresponding to this soil map unit, as delineated on the soil map, should be
taken”. By accounting for the spatial variability, a more accurate estimate of the repre-
sentative (most probable) texture for the given soil map unit can be formulated and can
be used to reduce the uncertainty in the model output. On the contrary, if the sampled25

texture is located within a region of low sensitivity in the texture triangle, the discrep-
ancy between the scale of measurement and the scale of model application will have
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a low impact on the predicted variable, and taking additional samples may therefore be
discarded, unless a high spatial variability in soil texture exists.

3.2.1 Sensitivity of soil hydraulic parameters

Five thousand compositions T = (Cl,Sa,Si) are sampled from the texture triangle ac-
cording to a Dirichlet distribution (with α = 1) and are perturbed with ξ = 10−2. For both5

the sampled and perturbed compositions, the corresponding SHPs are estimated with
the PTFs of Rawls and Brakensiek (1985), on which the sensitivity function ∇iSHP(T )
with i ∈ {1,2,3} and the sensitivity indices SSHP are calculated by applying the method-
ology as described in Algorithm 1. A contourplot of SSHP (Fig. 6a–e) reveals that the
sensitivity pattern highly depends on the parameter under consideration, although the10

patterns in Sθs
and Sψb

show a remarkable resemblance. For these parameters, the hot
spot of high sensitivity is located around textures with a clay content of 60–80 % and
a sand content of 20–40 %. The sensitivities Sθr

and Sλ show a pattern that is highly
dominated by the clay content: an increase in the clay content causes an increase (de-
crease) in the sensitivity if the clay content is lower (higher) than 30 %. Although the15

clay content of the hot spot matches for Sθr
and Sλ, the corresponding sand content

is different: around 0 % for the former and around 70 % for the latter. On the contrary,
the pattern in SKs

is dominated by the sand content: the higher the sand content, the
higher the sensitivity. The order of magnitude of the sensitivity index should be inter-
preted with respect to the corresponding SHP. Therefore, the mean predicted SHP over20

the entire texture triangle is given as a reference in Fig. 6. In summary, the potential un-
certainty in the predicted SHPs due to the discrepancy in scale between measurement
and model application highly varies across the texture triangle and among the different
SHPs, making it very difficult to formulate general guidelines to reduce the uncertainty
in the predicted SHPs.25
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3.2.2 Sensitivity of soil moisture

After determining the sensitivity of the estimated SHPs to soil texture, the SHPs are
used as input to the hydrologic model TOPLATS (run in spatially distributed mode) in
order to simulate the daily soil moisture content θt during the year 2006 at the sim-
ulation location (see Sect. 2.1.2) under Belgian weather conditions (see Sect. 2.1.2).5

The 5000 sampled textures and their perturbed textures are successively attributed to
the simulation location on which the corresponding sensitivity functions ∇iθt(T ) with
i ∈ {1,2,3} and sensitivity index Sθ are calculated as described in Algorithm 1. Fig-
ure 6f shows a contourplot of Sθ as a function of T and reveals a rather simple sensi-
tivity pattern. For textures with a clay content lower than 35 % or higher than 70 %, the10

sensitivity is strongly determined by the clay content with a positive and negative cor-
relation, respectively. For soils with a clay content between 35 % and 70 %, Sθ is also
highly influenced by the percentage of sand in the soil. The hot spot of high sensitivity
is located around textures with a clay and sand content of 55 % and 45 %, respectively.
This means that for these measured textures, the potential uncertainty in θ that is asso-15

ciated with the scaling issue will be the highest, but can, however, be reduced through
additional data collection.

3.2.3 Evaluation of the USDA class as sensitivity region

The objective of this section is to investigate whether a soil map of a region with indi-
cation of the USDA soil classes can be used as a rudimentary tool to set up the tex-20

ture sampling strategy prior to data collection such that the discrepancy between the
scale of measurement and the scale of model application within that region is optimally
managed with respect to the uncertainty in the model prediction. For the prediction in
a region that goes together with an USDA soil class that is attributed a high sensitivity
towards soil texture, it is important to reduce the uncertainty about the textural variability25

within that region. Obviously, sufficient samples should be taken to accurately estimate
the representative texture, which should result in a low model prediction uncertainty.
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Otherwise, if the soil map indicates that the prediction will take place in a region where
the soil class shows a low sensitivity towards texture, then resources can be saved
and data collection can be limited to a single soil sample, assuming that the textural
variability within that region is low.

In order to associate regions of high and low sensitivity of the SHP estimation with5

the commonly used USDA soil classification, SSHP is averaged over the samples falling

into the same USDA soil class, further denoted as SSHP (Table 1). For θs and ψb,

the soil class corresponding to the highest SSHP is clay, whereas for θr, λ and Ks,
this is respectively silt loam, sandy clay loam and sandy loam, which are also the
classes that contain the hot spot of high sensitivity for their respective SHP (Fig. 6).10

However, the hot spot only covers a part of the entire soil class, such that advising
a higher sampling density to formulate a representative texture for the corresponding
soil map units will not always be relevant. Based on these results, we may argue that
the USDA classification is only useful as a preliminary indication for the sensitivity in
SHP prediction because the variation in sensitivity within an USDA class is often high.15

As a consequence, the USDA soil map is suboptimal when used as a tool to optimize
the sampling strategy with respect to the potential uncertainty in the estimated SHPs
that is associated with the scaling issue.

By analogy, Sθ is averaged over each USDA soil class and the resulting Sθ is
shown together with its standard deviation in Fig. 7. Based on the total range in20

Sθ, four sensitivity classes are defined: low sensitivity (0 ≤ Sθ < 0.04), medium sen-
sitivity (0.04 ≤ Sθ < 0.08), high sensitivity (0.08 ≤ Sθ < 0.12) and very high sensitivity
(0.12 ≤ Sθ). The soil class sandy clay is attributed the highest Sθ and falls into the high
sensitivity class, which is obvious as this class contains the hot spot of high sensitiv-
ity (see Fig. 6). However, the variation in sensitivity within that soil class is very large25

and ranges from medium to very high. Also other soil classes enclose more than one
sensitivity class, e.g. clay and silt, which would require to re(de)fine those soil classes
with respect to their sensitivity. On the contrary, the classes loamy sand and sand on
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the one hand and the classes loam, silty clay loam and silty clay on the other hand,
completely fall within a single sensitivity class, and therefore correctly represent a low
and medium sensitivity, respectively. This supports the earlier findings to use the USDA
soil classification (and hence the USDA soil map) only as a preliminary indication of the
model output sensitivity towards textural changes. The dominant sensitivity class that5

is associated with the USDA class is then an indication of the sampling density needed
to formulate a representative texture for the given USDA class. For example the clayey
soil classes (e.g. sandy clay, clay loam and clay ) will require a higher sampling density.

3.3 Identification of the hydrologic model behaviour

The scatterplot in Fig. 8a shows how the model response Sθ is related to the average10

annual simulated soil moisture content θavg =
1
N

∑N
t=1θt, from which it is clear that very

high model sensitivities are only expected if the simulated soil moisture has a value
between 0.2 and 0.4, with a maximum around 0.3. On the contrary, low sensitivities
occur for both very low (θavg < 0.2) and very high soil moisture contents (θavg > 0.45).
This suggests that the more extreme (dry or wet) the soil moisture content becomes,15

the less uncertainty in the simulation result is involved when there is a discrepancy
between the scale of texture measurement and the scale of model application. Simi-
larly, scatterplots between Sθ and the SHPs (Fig. 8b–f) reveal that the sensitivity can
only be very high if the SHPs take specific values: θs, θr, ψb, λ and Ks should be
within the range [0.42,0.49], [0.1,0.12], [0.05,0.6], [0.4,1] and [5×10−8,5×10−6], re-20

spectively. The parameter values for which a maximum in Sθ is recorded, are combined
to construct the SMRC that involves the highest uncertainty in θ. The so-called “high
sensitivity” SMRC shows a rather linear behaviour (Fig. 9) that is characteristic for fine-
textured soils with a low effective porosity, i.e. θs −θr. For the sake of simplicity, it can
be said that this SMRC corresponds to low values of θs, ψb and λ, and a high value25

of θr. On the contrary, a low sensitivity of the simulated soil moisture is not exclusively
related to specific values of the SHPs, since for a broad range of SHP values the
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corresponding Sθ falls into the low sensitivity class. Nevertheless, it is observed that
the more the SHP values deviate from the specified range that gives rise to a very high
sensitivity, Sθ shifts towards the low sensitivity class. This means that the sensitivity
of the simulated soil moisture is certainly low in case θs, ψb and λ have a high value
and θr has a low value. The so-called “low sensitivity” SMRC that results from this soil5

parameter combination is characteristic for coarse-textured soils with a high effective
porosity and shows a highly nonlinear behaviour.

4 Conclusions

Considering the omnipresence of compositional data in the geosciences, we devel-
oped a method to perform a local sensitivity analysis on compositional model inputs.10

As the different parts of the input vary simultaneously, while preserving the closed char-
acter of the input, this method allows to abandon incorrect practice of OAT-SA. In the
presented SA method, a sensitivity index is calculated based on the finite difference
technique to approximate the directional derivatives of the model output with respect
to the compositional model input. Local perturbations of the compositions were real-15

ized by operations in the simplex and we relied on the assumption that all possible
perturbations are defined by a perturbation circle. Additionally, we supplemented the
SA method with a procedure to optimize the perturbation factor in order to minimize
numerical errors and errors due to model nonlinearities.

The SA method was subsequently applied to a hydrologic model to assess the sensi-20

tivity of the simulated soil moisture content to changes in soil texture, for a high number
of compositions in the texture triangle. In a first step, we found that the optimal factor
to perturb soil texture is 10−2. Although this value was found to be optimal in 65 % of
the cases, it was chosen to use a fixed value of ξ in order not to unnecessarily compli-
cate the sensitivity analysis. However, one should be aware that in 10 % of the cases25

this value is too low and might introduce numerical errors in the sensitivity analysis,
and that in 25 % of the cases this value is too high, which might result in errors due to
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the nonlinear behaviour of the hydrologic model. The optimal perturbation factor was
used to perform a local SA on 5000 different textures, sampled according to a Dirichlet
distribution from the texture triangle. The analysed models are the PTFs of Rawls and
Brakensiek (1985) and the hydrologic model TOPLATS of which the generated outputs
are respectively the soil hydraulic parameters and the soil moisture content. Based on5

these model applications, the sensitivity index was calculated for both model outputs
and was evaluated with respect to the position of the sampled texture in the texture
triangle.

The results of the sensitivity analysis were found to be useful (i) to reduce the un-
certainty on the modelled output when there is a discrepancy between the scale of10

measurement and the scale of model application and (ii) to gain more insight into the
behaviour of the applied model, and more specifically on how it reacts on changes in
the soil texture with respect to its position in the texture triangle. As such, we found that
the simulated soil moisture is most sensitive to soil texture when the measured clay
content is around 55 % and the sand content around 45 %. This means that the po-15

tential uncertainty that is involved with the scaling issue will be verythe highest under
these textural conditions. Therefore, when high uncertainties in the modelled output
are not acceptable, it is advised to take one or more additional texture samples within
the soil map unit that encloses the original sample such that a better estimate of the
most probable texture can be formulated. Similarly, we identified zones of high sensi-20

tivity for the soil parameters, showing a high variability in their sensitivity pattern. We
also investigated whether a soil map with indication of the USDA soil classes can be
used as a tool to optimize the texture sampling strategy by reviewing the USDA soil
classification with respect to the pattern in model output sensitivity. The results point
out that USDA classes are only useful as a rudimentary indication for the sensitivity25

as they distinguish between high and low sensitivity, but comprise a large within-class-
variability of the sensitivity. Especially the clayey soil classes sandy clay, clay loam and
clay involve high to very high sensitivities, such that it is advised to apply a high(er)
sampling density within these soil map units to calculate the representative texture.
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Furthermore, we were able to relate Sθ to the shape of the soil moisture retention
curve and recorded the highest sensitivity when the values of θs, ψb and λ are low and
the value of θr is high. The resulting curve is characteristic for fine-textured soils with
a low effective porosity and shows a rather linear behaviour.

Appendix A5

Procedure to determine the directional vectors

The directional vectors v = (v1,v2,v3) are defined as the intersection between the bi-
sectors B1, B2, B3 and the circle with centre p0 =

(100
3 , 100

3 , 100
3

)
and radius d . This

definition implies the following:

1. the coordinates of v must respect the system of Cartesian equations that describe10

each of the bisectors. Since on the bisectors, two components are always equal,
the problem boils down to finding two parts of v instead of three;

2. the norm of v should equal d , as v should be at a distance d from p0.

For the directional vectors on B1, the problem is mathematically defined as:
‖ v ‖A =

√
1
6

∑3
i=1

∑3
j=1

(
ln
(
vi
vj

))2
= d

v2 = 1−v1
2

v2 = v3

(A1)15

Solving this system of equations results in two solutions for v1 and v2:
v1a =

1

2e
√

3/2d+1
, v1b =

1

2e−
√

3/2d+1

v2a =
e
√

3/2d

2e
√

3/2d+1
, v2b =

e−
√

3/2d

2e−
√

3/2d+1

(A2)
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To determine the directional vectors on B2 and B3, the same procedure is followed.
Table 2 summarizes the coordinates of the resulting vectors. The minus sign indicates
the point on the bisector that is the farthest away from its vertex, whereas the plus sign
refers to the point on the bisector that is the closest to the vertex (see Fig. 3).
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Table 1. Average sensitivity index within the USDA soil classes, for the different soil hydraulic
parameters; the class with the highest average sensitivity is indicated in boldface, whereas the
class with the lowest average sensitivity is italic.

Soil Class Sθs
Sθr

Sψb
Sλ SKs

Sand 5.84×10−4 5.02 ×10−4 5.02 ×10−4 7.21×10−3 1.77×10−6

Loamy Sand 1.33×10−3 1.44×10−3 2.24×10−3 2.04×10−2 4.84×10−6

Sandy Loam 4.72×10−3 8.12×10−3 2.55×10−2 1.09×10−1 1.07×10−5

Sandy Clay Loam 4.10×10−3 5.33×10−3 2.85×10−2 1.47×10−1 5.02×10−6

Sandy Clay 4.34×10−3 8.02×10−4 3.35×10−2 5.72×10−2 3.77×10−7

Loam 4.41×10−3 6.41×10−3 3.37×10−2 7.31×10−2 7.89×10−7

Clay Loam 6.25×10−3 4.35×10−3 5.07×10−2 1.00×10−1 2.38×10−7

Silt Loam 6.90×10−3 1.52×10−2 5.95×10−2 1.02×10−1 5.97×10−7

Silt 6.48×10−4 2.11×10−3 6.91×10−3 6.26 ×10−3 2.52×10−8

Silty Clay Loam 3.25×10−3 4.79×10−3 2.18×10−2 6.40×10−2 4.46×10−8

Silty Clay 3.22×10−3 1.83×10−3 2.62×10−2 5.39×10−2 1.91×10−8

Clay 2.39×10−2 5.80×10−3 2.61×10−1 1.49×10−1 9.45×10−8
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Table 2. Coordinates of the directional vectors on bisector B1, B2 and B3.

v + v −

B1 (v1a,v2a,v2a) (v1b,v2b,v2b)
B2 (v2a,v1a,v2a) (v2b,v1b,v2b)
B3 (v2a,v2a,v1a) (v2b,v2b,v1b)
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Fig. 1. Representation of a sample x = (Cl,Sa,Si) in the texture triangle with indication of the
bisectors B1, B2 and B3, the vertices p1, p2, p3 and the boundary conditions on the PTFs of
Rawls and Brakensiek (1985, 1989).
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Fig. 12. (a) Representation of the baricenter p0, the sampled composition x and the bisectors B1, B2 and B3 after ILR-transformation
and (b) illustration of perturbation in the 2D Euclidean space with indication of the perturbed compositions {xi+,xi−} and the translated
bisectors B′1, B′2 and B′3.

Table 11. Average sensitivity index within the USDA soil classes, for the different soil hydraulic parameters; the class with the highest
average sensitivity is indicated in boldface, whereas the class with the lowest average sensitivity is underlined.

Soil Class Sθs Sθr Sψb Sλ SKs

Sand 5.84E-04 5.02E-04 5.02E-04 7.21E-03 1.77E-06
Loamy Sand 1.33E-03 1.44E-03 2.24E-03 2.04E-02 4.84E-06
Sandy Loam 4.72E-03 8.12E-03 2.55E-02 1.09E-01 1.07E-05
Sandy Clay Loam 4.10E-03 5.33E-03 2.85E-02 1.47E-01 5.02E-06
Sandy Clay 4.34E-03 8.02E-04 3.35E-02 5.72E-02 3.77E-07
Loam 4.41E-03 6.41E-03 3.37E-02 7.31E-02 7.89E-07
Clay Loam 6.25E-03 4.35E-03 5.07E-02 1.00E-01 2.38E-07
Silt Loam 6.90E-03 1.52E-02 5.95E-02 1.02E-01 5.97E-07
Silt 6.48E-04 2.11E-03 6.91E-03 6.26E-03 2.52E-08
Silty Clay Loam 3.25E-03 4.79E-03 2.18E-02 6.40E-02 4.46E-08
Silty Clay 3.22E-03 1.83E-03 2.62E-02 5.39E-02 1.91E-08
Clay 2.39E-02 5.80E-03 2.61E-01 1.49E-01 9.45E-08

Fig. 2. (a) Representation of the baricenter p0, the sampled composition x and the bisectors
B1, B2 and B3 after ILR-transformation and (b) illustration of perturbation in the 2-D Euclidean
space with indication of the perturbed compositions {xi+,xi−} and the translated bisectors B′

1,
B′

2 and B′
3.
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Fig. 14. The mean (full line), minimum and maximum (dotted lines) values of Cmax as a function of the perturbation factor ξ (a) and the
frequency distribution of the optimal perturbation factor (b), for 100 sampled compositions.

Fig. 3. Perturbation in the simplex of a composition x sampled from the texture triangle with
indication of the directional vectors {v i+,v i−}, the perturbed compositions {xi+,xi−}, the bi-
sectors B1, B2 and B3 and the translated bisectors B′

1, B′
2 and B′

3; illustration of compositional
circles at different locations in the texture triangle.
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Fig. 14. The mean (full line), minimum and maximum (dotted lines) values of Cmax as a function of the perturbation factor ξ (a) and the
frequency distribution of the optimal perturbation factor (b), for 100 sampled compositions.

Fig. 4. The mean (full line), minimum and maximum (dotted lines) values of Cmax as a function of
the perturbation factor ξ (a) and the frequency distribution of the optimal perturbation factor (b),
for 100 sampled compositions.
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Fig. 5. Distribution of the optimal perturbation factor ξ (100 samples) in the texture triangle (a)
with identification of the USDA soil classes (b).
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Fig. 16. Contourplot of the sensitivity index across the texture triangle for the estimated soil hydraulic parameters (a)-(e) θs (mean is 0.18
m3 ·m−3), θr (mean is 0.03 m3 ·m−3), ψb (0.16 m), λ (mean is 0.49), and log10Ks (mean is −6.11m ·s−1) and for the simulated soil
moisture content θ (f).Fig. 6. Contourplot of the sensitivity index across the texture triangle for the estimated soil

hydraulic parameters (a–e) θs (mean is 0.18 m3 m−3), θr (mean is 0.03 m3 m−3), ψb (0.16 m), λ
(mean is 0.49), and log10Ks (mean is −6.11ms−1) and for the simulated soil moisture content
θ (f).
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Fig. 17. Average sensitivity index Sθ for the 12 USDA soil classes
with indication of the standard deviation and the sensitivity classes
low (0≤ Sθ < 0.04), medium (0.04≤ Sθ < 0.08), high (0.08≤
Sθ < 0.12) and very high (0.12≤Sθ).

Fig. 7. Average sensitivity index Sθ for the 12 USDA soil classes with indication of the stan-

dard deviation and the sensitivity classes low (0 ≤ Sθ < 0.04), medium (0.04 ≤ Sθ < 0.08), high

(0.08 ≤ Sθ < 0.12) and very high (0.12 ≤ Sθ).
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Fig. 18. Scatterplot between Sθ and the soil hydraulic parameters θs, θr , ψb, λ, Ks (a)-(e) and the average simulated soil moisture content
θavg (5000 sampled textures).Fig. 8. Scatterplot between Sθ and the soil hydraulic parameters θs, θr, ψb, λ, Ks (a–e) and the

average simulated soil moisture content θavg (5000 sampled textures).
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Fig. 19. Soil moisture retention curve (SMRC) for which the sensi-
tivity of the simulated soil moisture to textural changes is the high-
est and the lowest, respectively.

Fig. 9. Soil moisture retention curve (SMRC) for which the sensitivity of the simulated soil
moisture to textural changes is the highest and the lowest, respectively.
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